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Quantitative convergent-beam electron diffraction (QCBED) experiments

allow absolute scale measurements of low-order structure factors with very

high accuracy. In this paper, eight low-order structure factors for copper

measured by QCBED have been combined with the higher-order �-ray structure

factors in order to obtain a larger highly accurate experimental data set. The

�-ray values were relativistically corrected and rescaled. The new data set was

then used for studying the charge distribution in copper. Charge deformation

maps have been produced and both a maximum-entropy and a multipole

analysis have been applied to the data. The result is compared to density

functional theory calculations. An almost spherical charge depletion is found

around the atomic sites showing typical metal bonding in copper.

1. Introduction

Recently, very accurate measurements of low-order structure

factors in copper have been performed (Friis et al., 2003). In

this work, we have further enhanced the accuracy of the

measurements. The new data set is then combined with the

corrected (Petrillo et al., 1998) �-ray measurements of

Schneider et al. (1981), and used for a more detailed study of

the charge distribution in copper.

The deformation density, defined as the difference between

the observed density and the procrystal density obtained from

the independent-atom model (IAM), describes the redis-

tribution of electronic charge due to bonding. Since this

charge redistribution mainly occurs in the valence region with

slow variations in the charge density, the bonding effect is

mainly seen in the differences in the lowest-order structure

factors. Since these differences are very small (around or less

than 1%), very accurate measurements are required. Such an

accuracy is difficult to obtain for the strong low-order reflec-

tions using ordinary X-ray or �-ray diffraction owing to

extinction and the contribution of anomalous scattering. Here

we overcome this problem by measuring the lowest-order

reflections with convergent-beam electron diffraction

(CBED), which is very sensitive at small scattering angles.

Copper has for a long time been used as a test case for

theoretical models of crystalline elements containing the

complicated d-electron bands. It is non-magnetic and is rela-

tively uncomplicated by relativistic effects because of its small

mass. It is therefore not surprising that there have been many

experimental measurements of the structure factors in copper.

By using �-ray diffractometry, Schneider et al. (1981) could

reduce the anomalous scattering and extinction effects in

copper compared to earlier powder and single-crystal X-ray

experiments (Batterman et al., 1961; Jennings et al., 1964;

Hosoya & Yamagishi, 1966; Temkin et al., 1972; Freud, 1973).

However, the available scattering angles were at the same time

reduced. Since it is difficult to obtain large perfect crystals of

copper, required for traditional X-ray Pendellösung experi-

ments, Takama & Sato (1982) measured a few low-order

structure factors using a white-beam X-ray Pendellösung

method. Although not as accurate as the ordinary Pendellö-

sung method, this technique does not require such large single

crystals. More recently, accurate structure factors have been

measured by electron diffraction techniques. A big advantage

of these methods is that they are performed in a transmission

electron microscope (TEM), making it possible to select a

perfect single-crystalline region for the experiment. However,

the accuracy of these techniques is reduced for higher-order

structure factors. Smart & Humphreys (1980) and Fox &

Fisher (1988, cited in Tabbernor et al., 1990) used the critical-

voltage method, which is capable of measuring the ratio

between structure factors as accurately as 0.1%. A limitation is

that this method relies upon the accuracy of the reference

used. The intersecting Kikuchi-line method, proposed by

Gjønnes & Høier (1971), uses the sensitivity of the separation

between high-order Kikuchi lines to certain structure factors.

This method was combined with CBED by Matsuhata et al.

(1984) for measuring the 111 and 020 reflections of copper.

However, the most accurate experiments on copper so far are

probably the quantitative CBED (QCBED) measurements by

Saunders et al. (1999) and Friis et al. (2003). The strong

multiple scattering of the electrons is here fully taken into

account by using dynamical theory, which at the same time

eliminates extinction and scaling problems. More detailed



overviews of the above experiments on copper can be found in

Tabbernor et al. (1990), Mackenzie & Mathieson (1992) and

Friis et al. (2003).

The �-ray experiment by Schneider et al. (1981) is the most

referred to structure-factor measurement for copper. The

reasons for this probably are the good internal consistency of

the data and that the data set is comparably large; 19 structure

factors were measured up to sin �=� ¼ 1:6 Å�1 at 50 K and

room temperature (Schneider, 1976). However, compared to

other experiments, these structure factors are somewhat low.

The absolute scale and even the extinction correction of the

�-ray data has therefore been questioned, and several

different corrections have been proposed. By applying an

improved extinction correction scheme to the 220 structure

factor, Mackenzie & Mathieson (1984) obtained a value closer

to that of other experiments. On the other hand, Tabbernor et

al. (1990) pointed out that good agreement can also be

achieved by rescaling the data set to fit the 111 reflection of

Fox & Fisher (1988). The idea that the discrepancy is due to

problems with absolute scale, and not to the extinction

correction, is also approved by Schneider (Tabbernor et al.,

1990). In a new analysis of Schneider et al.’s (1981) data,

Petrillo et al. (1998) chose a slightly smaller Debye–Waller

factor for Cu at 50 K. More importantly, Petrillo et al. (1998)

applied a kinematic correction (in the order of the experi-

mental errors), whose importance was first realized by Dewey

et al. (1994). This correction is due to the relativistic energies

of the � rays and can be interpreted as a relativistic change of

the electron mass. Finally, a scaling factor of 1.0042 (62) was

introduced in order to fit the relativistic Hartree–Fock free-

atom structure factors (Doyle & Turner, 1968) for scattering

angles sin �=�> 0.5 Å�1.

The aim of the current paper is to enhance the experimental

data (Friis et al., 2003) and to compare different ways to obtain

charge deformation maps. In particular, it includes the use of

the maximum-entropy method as a method to analyse

QCBED results.

We have in this paper slightly improved the already

published QCBED measurements (Friis et al., 2003) of low-

order structure factors in copper by including a few more

measurements and by re-evaluating the Debye–Waller factor

of copper at experimental temperature (x2). In x3, these

structure factors have then been combined with higher-order

�-ray diffractometry measurements by Schneider et al. (1981).

Before combination, the above-mentioned relativistic correc-

tion was applied and new Debye–Waller and scaling factors

were derived for the �-ray data. We have also applied a small

correction due to the difference in lattice parameter between

the CBED (close to 112 K) and �-ray (50 K) experiments.

Using the combined data set, new charge deformation maps

have been calculated using direct Fourier synthesis (x4), the

maximum-entropy method (MEM) (x5) and the multipole

model presented in Jiang et al. (2004) (recapitulated in x6).

Finally, in x7, the new data set is compared with other

experiments and theoretical calculations and the different

deformation density maps are compared and discussed.

2. QCBED measurements of structure factors

In the CBED technique, the electron probe in the TEM is

focused down to the size of a few nanometres. This makes it

easy to study perfectly crystalline regions of the sample. Since

the CBED patterns show the rocking curve of every diffracted

beam simultaneously, they are well suited for quantitative

work (Spence & Zuo, 1992; Zuo, 2004). Because electrons

interact strongly with the crystal potential and are multiply

scattered when they pass through the sample, a full dynamic

theory is required when analysing the CBED patterns.

Extinction, which is a problem in X-ray diffraction for the

strong low-order reflections in small unit-cell crystals, is

therefore fully accounted for in QCBED. The QCBED

method is based on a pixel-to-pixel comparison between the

experiment and a Bloch-wave simulation, where some of the

low-order Fourier coefficients of the crystal potential Vh are

treated as refinable parameters (Zuo, 1998). A typical CBED

pattern is shown in Fig. 1(a) for the 220 systematic row with

some line scans, sensitive to the refined parameters, marked on

it. Fig. 1(b) shows the best fit along the chosen line scans

obtained with the Bloch-wave simulation.
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Figure 1
(a) CBED pattern of the 220 systematic row in copper. The selected
rocking curves are shown with white lines. (b) Best fit from Bloch-wave
refinement of the selected rocking curves. The open circles are measured
intensities while the solid line is calculated intensities. The discrepancy for
each pixel between theory and experiment is also shown with dots.



For bonding studies, the interesting quantity is the electron

density, of which Fourier components are the X-ray structure

factors Fh. These are directly related to Vh through the reci-

procal-space version of Poisson’s equation (also known as the

Mott–Bethe formula). The operation of this equation provides

increased sensitivity to the low-order structure factors (Spence

& Zuo, 1992).

The structure factors reported in Table 1 under ‘this

experiment’ are based on the experiments published in Friis et

al. (2003), including some new refinements and with a few

problematic (not perfectly focused, contaminated or low-

exposed) CBED patterns replaced with new experiments. The

new experiments and refinements were performed in the same

way as earlier described in Friis et al. (2003) and the same

lattice parameter a ¼ 3:60540 ð3Þ Å was used. These additions

have not led to any significant changes in the structure-factor

values, but the errors are somewhat decreased due to better

statistics. More notable is that the value of the 420 structure

factor has been added to the data set and a new value of the

Debye–Waller factor has been used. In Friis et al. (2003), the

Debye–Waller factor was estimated solely from the extra

carefully measured 440 reflection. In this work, however,

Wilson plot fitting is used in order to include all the measured

reflections in the determination of the Debye–Waller factor.

The basic idea is to estimate the temperature factor expð�Bs2Þ

by least-squares fitting of the measured scattering factor

f expðsÞ to expð�Bs2Þf 0ðsÞ, where f 0ðsÞ is the theoretical static

lattice scattering factor, B is the Debye–Waller factor and

s ¼ sin �=� is the scattering angle. Normally, high-order

reflections are used for Wilson plot fitting since they are more

sensitive to the temperature factor and not affected by

bonding. However, with QCBED, only low-order structure

factors are measured, so the bonding effects must be consid-

ered when calculating the static lattice scattering factors.
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Table 1
Selected theoretical and experimental static lattice scattering factors for Cu.

The data set is complete up to 440 but after that 39 structure factors are missing up to 880. The column labelled ‘combined’ is the same as this experiment, but with
the missing values replaced by the corrected �-ray data. The agreement factors Rthis exp and Rcombined are given by R ¼

P
jjFj � jFref jj

� � P
jFref j

�
and show the

agreement between this experiment and the combined data, respectively.

Bagayoko
Schneider et al. (1981)

Saunders This
et al. Original Corrected et al. experiment Multipole

h k l sin �=� (Å�1) IAM† (1980) DFT‡ values �§ values } (1999) (2003) Combined MEM analysis

1 1 1 0.24 22.05 21.68 21.70 21.51 (5) �0.06 21.73 (5) 21.78 (2) 21.69 (3) 21.69 (3) 21.84 21.71
2 0 0 0.28 20.69 20.35 20.38 20.22 (4) �0.07 20.43 (4) 20.44 (2) 20.44 (2) 20.44 (2) 20.47 20.41
2 2 0 0.39 16.74 16.62 16.67 16.45(5) �0.08 16.63 (5) 16.7 (1) 16.68 (2) 16.68 (2) 16.70 16.67
3 1 1 0.46 14.74 14.70 14.75 14.54 (4) �0.08 14.70 (4) 14.8 (1) 14.73 (1) 14.73 (1) 14.72 14.74
2 2 2 0.48 14.19 14.17 14.21 14.07 (5) �0.08 14.22 (5) 14.24 (7) 14.24 (7) 14.20 14.21
4 0 0 0.56 12.42 12.42 12.48 12.29 (6) -0.08 12.42 (6) 12.45 (9) 12.45 (9) 12.43 12.46
3 3 1 0.60 11.42 11.41 11.47 11.30†† �0.09 11.42 (9) 11.42 (9) 11.42 11.46
4 2 0 0.62 11.13 11.13 11.19 11.02 (6) �0.09 11.1 (1) 11.18 (9) 11.18 (9) 11.14 11.18
4 2 2 0.68 10.16 10.16 10.21 10.08 (6) �0.09 10.2 (1) 10.2 (1) 10.16 10.20
3 3 3 0.72 9.58 9.58 9.63 9.49 (6) �0.09 9.59 (9) 9.59 (9) 9.58 9.62
5 1 1 0.72 9.58 9.58 9.64 9.53 (6) �0.09 9.63 (9) 9.63 (9) 9.58 9.62
4 4 0 0.78 8.82 8.86 8.84 (8) �0.09 8.9 (1) 8.85 (2) 8.85 (2) 8.84 8.86
6 0 0 0.83 8.35 8.40 8.37 (9) �0.09 8.5 (1) 8.5 (1) 8.36 8.39
4 4 4 0.96 7.38 7.40 7.33 (9) �0.09 7.4 (1) 7.4 (1) 7.38 7.41
8 0 0 1.11 6.64 6.66 6.8 (1) �0.09 6.8 (2) 6.8 (2) 6.65 6.65
6 6 0 1.18 6.37 6.37 6.4 (1) �0.09 6.4 (2) 6.4 (2) 6.38 6.37
5 5 5 1.20 6.28 6.27 6.3 (1) �0.09 6.3 (2) 6.3 (2) 6.29 6.28
10 0 0 1.39 5.66 5.65 5.6 (2) �0.09 5.6 (2) 5.6 (2) 5.65 5.65
6 6 6 1.44 5.49 5.49 5.5 (2) �0.09 5.5 (2) 5.5 (2) 5.49 5.49
8 8 0 1.57 5.09 5.09 5.1 (2) 0.09 5.1(2) 5.1 (2) 5.09 5.09

Rthis exp (%) 0.69 0.31 0.15 1.09 0.24 0.24 – 0.27 0.10
Rcombined(%) 0.64 0.30 0.30 0.96 0.14 0.24 – 0.38 0.28

† Calculated from Doyle & Turner (1968). ‡ Calculated with the WIEN2k program of Blaha et al. (2001). § Relativistic correction of the �-ray structure factors from Petrillo et al.
(1998). } Estimated standard uncertainties are from Petrillo et al. (1998). †† Estimated by interpolation.

Figure 2
Wilson plot of the QCBED data at 112 K with DFT as static lattice
reference. B is the Debye–Waller factor and k the scale factor (we assume
QCBED to be on an absolute scale).



Hence, we have used DFT instead of the more commonly used

scattering factors of Doyle & Turner (1968). Furthermore,

since QCBED provides structure factors on an absolute scale,

the scaling factor k is constrained to 1. This results in

B ¼ 0:250 ð2Þ Å2 at 112 K (Fig. 2), which agrees well with our

previous value B ¼ 0:248 Å2.

Finally, a small correction, accounting for the difference in

scattering angle between experimental temperature (112 K)

and static lattice, has been applied to the measured structure

factors. This can be approximated by multiplying the structure

factors with a ratio f ðs0KÞ=f ðs112KÞ, where f ðsÞ are interpolated

scattering factors (Doyle & Turner, 1968) depending on the

scattering angle sT, given by the lattice parameter at

temperature T. Bonding effects are not important to consider

here, since this correction is small and the ratio f ðs0KÞ=f ðs112KÞ

will tend to cancel the introduced errors.

3. Combination with c-ray data

In order to reduce truncation errors due to the limited set of

measured structure factors when studying the charge density,

the QCBED data have been combined with the �-ray

measurements by Schneider et al. (1981) after subtraction of

the small relativistic correction � calculated by Petrillo et al.

(1998). In Fig. 3, the Debye–Waller factor and scale factor1 are

determined at 50 K from both the corrected and uncorrected

structure factors. Again, DFT has been used as the static

lattice reference allowing us to use the whole data set. It is

seen that the kinematic correction gives rise to small but

significant changes in the Debye–Waller factor and scale-

factor values. It should also be noted that the Debye–Waller

factor B ¼ 0:153 ð2Þ Å2 obtained with the kinematic correc-

tion is identical to the value calculated by Svensson et al.

(1969) at 50 K. The relativistically corrected structure factors

listed in Table 1 are obtained by subtracting � from Schneider

et al.’s (1981) original values and using B ¼ 0:153 Å2 and

k ¼ 1:008 instead of B ¼ 0:167 Å2 and k ¼ 1 as used by

Schneider et al. (1981). We have also applied the same increase

in the standard uncertainties to these ‘corrected’ structure

factors as used by Petrillo et al. (1998). In the column labelled

‘combined’, we have replaced the corrected structure factors

by our QCBED measurements in those cases where they are

available.

4. Charge deformation density of copper

The kinematic non-forbidden structure factors for Cu take the

form

FðsÞ ¼ 4f ðsÞ expð�Bs2
Þ; ð1Þ

where f ðsÞ is the atomic scattering factor (or form factor). For

the IAM, several good parameterizations of the scattering

factors exist (Su & Coppens, 1997; Peng, 1998; Macchi &

Coppens, 2001). The most famous and widely used are prob-

ably the relativistic Hartree–Fock scattering factors of Doyle

& Turner (1968), which are used for the IAM in this paper. A

commonly used quantity for recognition of bonding features is

the experimental deformation density,

��ðrÞ ¼
1

V

X
h

ðFobs
h � FIAM

h Þ expð�2�ir � hÞ; ð2Þ

defined as the difference between the crystal and the IAM

densities. V is the unit-cell volume. The deformation density

shows charge accumulation in bonding regions, but quantita-

tive considerations cannot be drawn too far, since the defor-

mation density depends on the definition of the reference

density and is thermally averaged. Another practical limita-

tion of deformation densities calculated from a set of

measured structure factors is the errors due to series trunca-

tion. As shown in Fig. 4, these errors are mainly concentrated

in high-symmetry regions. For copper, it is common to plot the

charge density in the (110) plane since this plane contains both

nearest, second-nearest and third-nearest neighbours. Fig. 5

shows the deformation density calculated from the 12 lowest-

order structure factors in the combined data set. Since the data

are only complete up to 440 (sin �=� � 0:79 Å�1), higher

orders are not included. The standard uncertainties of the

deformation density, shown in Fig. 4, were calculated

according to the formalism of Rees (1976) and Rees &

Mitschler (1976). In accordance to this formalism, the trun-

cation errors will accumulate close to high-symmetry sites,

since these regions contain many symmetry-equivalent posi-

tions. The effect of the uncertainties in the scaling and Debye–

Waller factors on the deformation density are negligible

compared to the uncertainties shown in Fig. 4.

The deformation density in Fig. 5 seems to show, as

expected from metallic bonded crystals, charge depletion at

the atomic sites and a build up of charge in the interstitial

regions. A maximum of 0.19 e Å�3 is seen at the interstitial

octahedral sites. However, this maximum is not significant due

to the large standard uncertainties, �ð��Þ ¼ 0:26 e Å�3 at the

octahedral sites.
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Figure 3
Wilson plot of �-ray data at 50 K with DFT as static lattice reference. The
Debye–Waller factor B and scaling factor k are shown for the best fit with
(solid line) and without (dotted line) the kinematic � correction.

1 The scale factor k is defined by kjFexpj ¼ expð�Bs2ÞjF0j, where F0 are static
lattice structure factors.



In the following two sections, more sophisticated methods

are used in order to deal with the truncation and other errors

due to the incompleteness of the data.

5. Maximum-entropy fitting of direct-space charge
density

The maximum-entropy method (MEM) is a method based on

information theory to enhance information from limited or

poor data. Applications in crystallography have been

reviewed by Gilmore (1996). It has often been used to

calculate the charge-density distribution from a limited set of

structure factors (Collins, 1982; Sakata & Sato, 1990; Papoular

et al., 1996). The basic idea is to find the charge distribution

that maximizes the entropy, under the constraint that structure

factors calculated from this distribution must match the

measured structure factors.

But, as pointed out by Jauch & Palmer (1993) and Jauch

(1994), the traditional maximum-entropy algorithm is limited

when fine details, such as bonding deformation, are to be

studied, and the charge density to be reconstructed has a large

dynamic range. However, if one uses the deformation density

��ðrÞ as the key quantity when maximizing the entropy, the

dynamic range is substantially reduced and the small bonding

features become more pronounced. Since MEM relates the

charge density directly to probabilities, the use of the defor-

mation density, which takes both positive and negative values,

requires a two-channel method. This method has successfully

been used for magnetization densities (Papoular & Gillon,

1990), in neutron diffraction involving scattering lengths of

opposite signs (Sakata et al., 1993) and deformation densities

(Papoular et al., 1996).

In the two-channel method, the deformation density is split

into two quantities, a positive �þðrÞ and a negative ��ðrÞ part,

such that ��ðrÞ ¼ �ðrÞ � �IAMðrÞ ¼ �þðrÞ � ��ðrÞ. The unit

cell is divided into M pixels, each of size V=M centred at rj and

with densities �þj ¼ �
þðrjÞ and ��j ¼ �

�ðrjÞ. The entropy

functional to be maximized is given by

S½��� ¼ �
PM
j¼1

½pþj ln pþj þ p�j ln p�j �; ð3Þ

where p�j ¼ �
�
j =Q�, with Q� ¼

PM
j¼1 �

�
j , are the corre-

sponding probabilities for the positive and negative parts of

the deformation density associated with pixel j. The maximi-

zation of S½��� is performed under the constraint that the

difference between the structure factors calculated from the

MEM charge density and the IAM structure factors,

�Fcalc
h ¼

V

M

XM

j¼1

ðQþpþj �Q�p�j Þ expð2�ih � rÞ; ð4Þ

agrees with the difference between the N observed structure

factors and IAM structure factors �Fobs
h within the standard

uncertainty �h. This condition is expressed as

�2
¼

1

N

X
h

j�Fobs
h ��Fcalc

h j
2=�2

h

� �
<
� 1: ð5Þ

The problem is solved by maximizing the Lagrange functional

L½�� ¼ S½��� � ��2, where � is the Lagrange multiplier. At

convergence, r�L ¼ 0, resulting in the normalized densities

p�j ¼ m�j exp ��
@�2

@p�

� �
; ð6Þ

where m�j are prior density distributions. The deformation

density is obtained by solving equations (4), (5) and (6)

iteratively for both p� and �, starting from a flat deformation

density and � >� 0.

It has been argued that a problem with two-channel MEM

applied to the deformation density is that Qþ and Q� are

unknown. However, since the total amount of charge is

conserved in the formation of the deformation density, we

must have Qþ ¼ Q� ¼ Q. It is then easy to show that, by

introducing a scaled Lagrange multiplier � ¼ �Q, one can

move all dependence of Q into this Lagrange multiplier.

Hence, the value chosen for Q does not matter, since the

Lagrange multiplier is already an unknown parameter that has

to be given a suitable value in order to achieve convergence.
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Figure 4
Standard uncertainty in the deformation density calculated from the
combined data set, sin �=� � 0:79 Å�1. The contour lines range from 0.1
to 0.25 e Å�3 with intervals of 0.05 e Å�3.

Figure 5
Electron deformation density calculated from the combined data set for
sin �=� � 0:79 Å�1. Negative contours (white) are at intervals of
0.1 e Å�3 and positive contours (black) are at intervals of 0.05 e Å�3.
The zero contour is shown as a thick line.



The MEND program (Sakata & Takata, 1994), modified by

Burger (1998), was used to solve the problem. The unit cell

was divided into 128	 128	 128 pixels. In order to check that

the algorithm only depends on the product of � and Q, several

different starting points with uniform prior deformation

densities, ��þ0;j ¼ ���0;j ¼ 0:05; 0:1; 1:0; 2:5 e Å�3, were tried.

In all cases, the same convergence was achieved with �0

around ð5	 10�4 e Å
�3
Þ=��0;j. The same results were also

obtained with smaller grids of 32	 32	 32 and

64	 64	 64 pixels.

The deformation density for ��þ0;j ¼ ���0;j ¼ 0:05 e Å�3

and �0 ¼ 0:01 is shown in Fig. 6. This map is quite similar to

the one obtained from direct Fourier synthesis. It shows an

average interstitial charge surplus of 0.05 e Å�3 and a less

pronounced peak at the interstitial octahedral sites.

Instead, small maxima are seen at the midpoint of the

nearest-neighbour bond and at the tetrahedral sites.

6. Multipole analysis

In multipole analysis, the atomic charge density is expanded in

terms of a series of multipolar functions centred at the nucleus.

The multipole populations and radial expansion parameters

are determined from least-squares fitting to the measured

structure factors. This method has the advantage that it

provides an analytical expression for the charge density,

allowing for easy calculation of physical properties based on

the charge distribution. Another interesting feature is that the

multipole populations can be related to orbital occupancies.

In the valence-density formalism of Hansen & Coppens

(1978), the atomic electron density

�atomðrÞ ¼ Pc�coreðrÞ þ Pv�
3�valenceð�rÞ

þ
Plmax

l¼0

�03l Rlð�
0
lrÞ
Pl

m¼0

Plm� dlm�ð�; 	Þ ð7Þ

is described by three parts: a spherical core part populated

with Pc electrons, a spherical valence part which is allowed to

expand (�< 1) or contract (�> 1) with population Pv and a

series of multipolar functions accounting for an aspherically

redistribution of the electron density, each populated with

Plm� electrons. The multipolar functions are characterized by

the radial functions Rlð�
0
lrÞ and the density functions

dlm�ð�; 	Þ, which are density-normalized real spherical

harmonics (Coppens, 1997, ch. 3). Because of the strong

symmetry imposed by the cubic atom site symmetry of copper,

all terms in the multipole expansion up to lmax ¼ 3, except for

the monopole, will vanish (Kurki-Suonio, 1977). For the

hexadecapoles ðl ¼ 4Þ, only one independent cubic population

parameter Phex will remain.

In Jiang et al. (2004), a multipole analysis for the combined

data set was performed. Assuming that the 3d radial wave-

function has a diffuse tail that does not contribute significantly

to the measured reflections, a model that reproduces very well

the observed structure factors could be obtained. This defor-

mation of the 3d orbital was simulated by writing the 3d

orbital as 3ddeformed ¼ 3d10�n4sn with n ¼ 1:34, where 3d and

4s here refers to Clementi & Roetti’s (1974) Slater-type radial

functions.

Applied to the new data set, this model results in a negli-

gible aspherical contribution to the charge density in copper

[Phex ¼ �0:0000 ð2Þ], which is also seen from the spherical

charge depletion around the atomic sites in the model defor-

mation-density map (Fig. 7) obtained by evaluating density

functions in direct space. The fact that the spherical model

seems to give a very good description of copper also validates

the special construction of the 3ddeformed radial function.

7. Discussion and conclusions

For comparison, several sets of low-order scattering factors for

copper are listed in Table 1. The theoretical values are the

IAM scattering factors by Doyle & Turner (1968), the self-

consistent band-structure calculation by Bagayoko et al.

(1980) and a full-potential DFT calculation using the gener-

alized gradient approximation (GGA) performed with

WIEN2k (Blaha et al., 2001). Experimental values are the

�-ray diffractometry measurements by Schneider et al. (1981),

the QCBED experiments by Saunders et al. (1999) and the
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Figure 7
Model deformation density of the (110) plane from multipole analysis.
The deformation density in the interstitial region is 0.05 e Å�3. Contour
intervals are 0.01 e Å�3. The zero contour is shown as a thick line.

Figure 6
The deformation density from a two-channel MEM simulation. Negative
contours (white) are at intervals of 0.1 e Å�3 and positive contours
(black) are at intervals of 0.05 e Å�3. The zero contour is shown as a thick
line.



QCBED experiments presented in the present paper. The last

two rows show the scattering factors obtained by applying the

MEM and multipolar analysis to the combined data set. The

difference between the scattering factors and the IAM values

are plotted in Fig. 8 as well as the corresponding differences

for the DFT, MEM, observed and multipole scattering factors.

As seen from Table 1, there is an inconsistency between the

two QCBED measurements of the 111 structure factor. We do

not have a satisfactory explanation for this, but it might be

related to the fact that the small scattering angle of the 111

reflection leads to overlapping discs. In our systematic row

approach, it is still easy to draw long line scans above or below

the overlapping regions. However, in the zone-axis approach

by Saunders, this may lead to problems.

The R factors in Table 1 show that correcting the �-ray data

leads to large improvements in the agreement between the

�-ray measurements and our experiment.

Compared to the old calculation by Bagayoko et al. (1980),

the DFT calculations show a significant improvement in the R

factor for our experiment. However, the agreement for the

DFT calculations are worse when the higher-order corrected

�-ray data are also taken into account. Since the GGA method

is usually more accurate for higher orders, this might imply

that there are still some problems with the �-ray data, despite

the corrections.

In Jiang et al. (2004), it is seen from the DFT calculations

that the scattering from the valence 3d and 4s orbitals is very

small at sin �=� ¼ 0:8 Å�1 and almost vanish for scattering

angles larger than 1 Å�1. One would therefore expect the true

scattering factors to be very close to the IAM values for

sin �=�> 1:0 Å�1, which also is the case in Fig. 8.

It is clear from Fig. 8 that the multipole model fits the

observed scattering factors very well.

However, an even better agreement is seen between DFT

and the multipole model, which justifies our construction of

the 3d multipolar orbital.

The model deformation density calculated by DFT is shown

in Fig. 9. It is very similar to the multipolar model deformation

density in Fig. 7. Both these maps show a spherical charge

depletion at the atomic sites, typical for metallic bonding, but

also a small charge surplus between the nearest neighbours.

The maximum-entropy method tends to move the structure

factors toward the IAM values (Fig. 8), which are the structure

factors maximizing the entropy for the two-channel method

used in this work. This does not seem to provide much physical

insight, but a smoother (and more realistic) charge density is

obtained compared to direct Fourier synthesis. However, the

MEM can be seen as a statistical method to potentially reduce

the problems with incomplete data sets and truncation errors

in deformation-density maps obtained by Fourier synthesis.

And indeed, the MEM deformation-density map (Fig. 6)

shows features similar to those from DFT (Fig. 9), but the

radius of the spherical charge depletion around the nucleus is

too small and the deformation density still shows some

unphysical ripples.

In summary, DFT and the multipole model seem to provide

a very good description of copper, which shows typical

metallic bonding.
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